研究队伍
人才库

胡建生

职称:研究员

专业:等离子体物理

电话:18255109078

单位:等离子体所

E-mail:hujs@ipp.ac.cn

地址:安徽省合肥市蜀山湖路 350号中科院等离子体物理研究所,230031

简历

  胡建生,男,1973年出生,安徽怀宁人。中科院等离子体物理研究所研究员、博导、学术委员会委员、研究室室务委员。他1994年本科毕业于西安交通大学物理电子学专业;1998年硕士毕业于等离子体所核能科学与工程专业;2008年博士毕业于等离子体所等离子体物理专业。他是国家杰出青年科学基金获得者,科技部中青年科技创新领军人才、中国科学院关键技术人才、国家重点研发项目负责人,荣获国家科技进步奖创新团队奖、安徽省首届创新争先奖、中科院院长奖优秀奖、安徽省优秀博士论文奖、IOP出版集团2018年中国作者论文高引奖等奖项。兼任“聚变堆材料中氢同位素国际研讨会(HWS)”国际组委、“液态金属在聚变堆中应用国际研讨会(ISLA)”国际组委、《真空科学与技术学报》编委、安徽省真空学会副理事长,以及Nucl Fusion等多种期刊申稿人。他负责托卡马克装置真空科学技术发展与应用,致力于磁约束聚变装置等离子体与壁相互作用的研究。他先后负责发展了超导托卡马克真空获得技术,研发了国内首个大通量实时水冷铜合金热沉高性能石墨限制器,探索了多种工作气体的射频等离子体清洗、硼化及锂化等壁表面涂覆的关键技术和方法,发展了超声分子束及弹丸注入等先进芯部加料技术,发明和演示了多种控制高热负荷ELM的新方法,率先在托卡马克上开展了流动液态锂第一壁的实验研究,有效控制粒子再循环及杂质污染,提高了等离子体密度控制能力,实现了低再循环、密度可控的长脉冲等离子体,有利于解决聚变装置高参数等离子体稳态运行的重大难题。以第一或者通讯作者在Phys. Rev. Lett.、Nucl. Fusion等期刊上发表论文七十多篇,国际重要学术会议报告五十余次,专利授权十余项。先后主持了国家重点研发项目、国家磁约束研究计划专项课题、多项国家自然科学基金及中科院人才项目。作为访问学者十余次出访意大利、日本、德国、美国、西班牙、泰国、韩国、俄罗斯、英国等国相关聚变研究单位,建立了广泛联系和国际合作。建立了一支稳定的高水平研究团队,已培养硕士、博士研究生十余名。

研究领域 荣誉 学术论文 专利

磁约束聚变装置等离子体壁相互作用和真空科学技术的研究

  2018年IOP出版集团中国作者论文高引奖

  2017年科技部中青年科技创新领军人才

  2017年安徽省首届创新争先奖

  2017年国家重点研发项目首席专家

  2016年国家杰出青年科学基金获得者

  2013年中国科学院关键技术人才

  2013年作为主要成员获国家科技进步奖(创新团队奖)

  2009年安徽省优秀博士论文奖

  2006年中国科学院院长优秀奖

  第一或者通讯作者论文74篇:

  [1]        Experiments of continuously and stably flowing lithium limiter in EAST towards a solution for the power exhaust of future fusion devices, Nuclear Materials and Energy, Vol. 18 (2019) 99–104

  [2]        Corrosion characteristics of copper in static liquid lithium under high vacuum, Journal of Nuclear Materials, Vol. 513(2019) 282-292, 2019

  [3]        Results from an improved flowing liquid lithium limiter with increased flow uniformity in high power plasmas in EAST, Nucl. Fusion, Vol. 59(2019) 016009

  [4]        ELM frequency enhancement and discharge modification through lithium granule injection into EAST H-modes, Nucl. Fusion, Vol. 58 (2018) 126021

  [5]        ELM elimination with Li powder injection in EAST discharges using the tungsten upper divertor, Nucl. Fusion, Vol. 58 (2018) 024003

  [6]        Investigation of wettability of Li on 316L SS surface and interfacial interactions for fusion device, Fusion Engineering and Design, Vol. 137(2018)420-426

  [7]        Reduction of hydrogen content in deuterium plasma with mixed graphite and tungsten divertors in EAST, Fusion Engineering and Design, Vol. 131 (2018) 41–48

  [8]        Development and implementation of Supersonic Molecular Beam Injection for EAST tokamak, Fusion Engineering and Design, Vol. 134 (2018)62-67

  [9]        10 Hz pellet injection control system integration for EAST, Fusion Engineering and Design, Vol. 126 (2018) 130–138

  [10]        A new developed in-between shots lithium evaporation coating system for improving plasma performance in EAST, Fusion Engineering and Design, Vol. 133 (2018) 142–147

  [11]        Real-time reduction of tungsten impurity influx using lithium powder injection in EAST, Fusion Engineering and Design, Vol. 137(2018)202-208

  [12]        Impact of Novel Lithium Coating Apparatus on Plasma Behavior Improvement in Experimental Advanced Superconducting Tokamak, Chinese Journal of Vacuum Science and Technology, Vol. 38 (2018) 284-289

  [13]        Measurement of velocity and reliability of 50 Hz pellet injector for EAST, Fusion Engineering and Design, Vol. 130 (2018) 69–75

  [14]        Design and Engineering Commissioning of High Frequency Pellet Injector for Experimental Advanced Superconducting Tokamak, Chinese Journal of Vacuum Science and Technology, Vol.38(3)(2018) 246-251

  [15]        First results of ELM triggering with a multi-chamber lithium granule injector into EAST discharges, IEEE Transactions on Plasma Science, Vol. 46 (2018)

  [16]        Effect of temperature on the corrosion behaviors of 304 stainless steel in static liquid lithium, Fusion Engineering and Design, Vol. 128 (2018) 75–81

  [17]        Compatibility of Molybdenum, Tungsten, and 304 Stainless Steel in Static Liquid Lithium Under High Vacuum, Plasma Physics Reports, Vol. 44(2018)671-677

  [18]        Upgraded flowing liquid lithium limiter for improving Li coverage uniformity and erosion resistance in EAST device, Rev. Sci. Instrum., Vol. 88(2017)123506

  [19]        Mitigation of plasma–material interactions via passive Li efflux from the surface of a flowing liquid lithium limiter in EAST, Nucl. Fusion, Vol. 57 (2017) 046017

  [20]        H-mode achieved by pellet injection in experimental advanced superconducting tokamak, Nucl. Fusion, Vol. 57 (2017) 066002

  [21]        Higher resolution helium measuring system for deuterium plasma on EAST tokamak via normal Penning gauge, Plasma Sci. Technol., Vol. 19 (2017) 015601

  [22]        Fuel retention and recycling studies by using particle balance in EAST tokamak, Phys. Scr., T170 (2017) 014070

  [23]        Development and integration of a 50 Hz pellet injection system for the Experimental Advanced Superconducting Tokamak (EAST), Fusion Engineering and Design, Vol. 114 (2017) 40–46

  [24]        First results of the use of a continuously flowing lithium limiter in high performance discharges in the EAST device, Nucl. Fusion, Vol. 56 (2016) 046011

  [25]        Snake perturbation during pellet injection in the EAST tokamak, Plasma Phys. Control. Fusion, Vol. 58 (2016) 105006

  [26]        Density limits investigation and high density operation in EAST tokamak, Plasma Phys. Control. Fusion, Vol.58(2016) 055013.

  [27]        Study of the corrosion behaviors of 304 austenite stainless steel specimens exposed to static liquid lithium at 600 K, J. Nucl. Mater., Vol. 480 (2016) 25-31

  [28]        Development and integration of a 50 Hz pellet injection system for the Experimental Advanced Superconducting Tokamak (EAST), Fusion Eng. Des., Vol. 114 (2017) 40-46

  [29]        Development and implementation of fowing liquid lithium limiter control system for EAST, Fusion Eng. Des., Vol. 112 (2016) 332-337

  [30]        Mass separation of deuterium and helium with conventional quadrupole mass spectrometer by using varied ionization energy, Rev. Sci. Instrum., Vol. 87 (2016), 035120

  [31]        Investigations on interactions between the flowing liquid lithium limiter and plasmas, Fusion Eng. Des., Vol. 102 (2017) 36-43

  [32]        Higher resolution helium measuring systemfor deuterium plasma on EAST tokamak via normal Penning gauge, Plasma Sci. Technol., Vol. 19 (2017) 015601

  [33]        New steady-state quiescent high confinement plasma in Experimental Advanced Superconducting Tokamak, Physical Review Letter, Vol.114(2015)055001

  [34]        ELM mitigation by means of supersonic molecular beam and pellet injection on the EAST superconducting tokamak, Journal of Nuclear Materials, Vol. 463 (2015) 718–722

  [35]        A flowing liquid lithium limiter for the Experimental Advanced Superconducting Tokamak, Review of Scientific Instruments, Vol. 86 (2015) 023504

  [36]        HT-7 装置液态锂限制器实验中锂的腐蚀与沉积特性的研究,Acta Physica Sinica, Vol. 64 (2015) 212801

  [37]        An overview of lithium experiments on HT-7 and EAST during 2012, Fusion Engineering and Design, Vol.89(2014)2875–2885

  [38]        Liquid lithium surface control and its effect on plasma performance inthe HT-7 tokamak, Fusion Engineering and Design, Vol.89(2014)2886–2893

  [39]        Influence of lithium coatings with large-area coverage on EAST plasma performance, Fusion Engineering and Design, Vol.89 (2014)2845–2852

  [40]        A repetitive pellet injection system for steady state fueling in EAST superconducting tokamak, Fusion Engineering and Design, Vol.89(2014)99-103

  [41]        First results of flowing liquid lithium limiter in HT-7, Physica Scripta, T159(2014)014033

  [42]        First Results of Pellet Injection Experiments on EAST, Plasma science and technology, Vol.16(2014)913-918

  [43]        HT-7托卡马克全金属壁及锂化条件下辉光放电清洗的研究, Chinese Journal of Vacuum Science and Technology, Vol.34(2014)731-736

  [44]        Development of and experiments with liquid lithium limiters on HT-7, Journal of Nuclear Materials, Vol.438 (2013) S899–S904,

  [45]        Lithium Coating for H-Mode and High Performance Plasmas on EAST in ASIPP, Journal of Nuclear Materials, Vol.438 (2013) S90–S95

  [46]        EAST 弹丸注入系统及其工程调试,Chinese Journal of Vacuum Science and Technology,Vol. 33(2013)454

  [47]        In?uence of Li and B coatings of metal walls on deuterium retention and plasma con?nement in HT-7, Nuclear Fusion, Vol.52 (2012)103002

  [48]        Comparison of various wall conditionings on the reduction of H content and particle recycling in EAST, Plasma Physics and Controlled Fusion, Vol.54 (2012) 015014

  [49]        Recent results of boronization on EAST and HT-7 superconducting tokamak, Journal of Nuclear Materials, Vol. 415(2011) S1046–S1049,

  [50]        First results of lithium experiments on EAST and HT-7, Journal of Nuclear Materials, Vol.415 (2011) S1062–S1066

  [51]        Recent researches on dust in EAST and HT-7 tokamaks,Journal of Nuclear Materials, Vol.415 (2011) S1094–S1097

  [52]        HT-7托卡马克中破裂等离子体放电对器壁放气的影响, Chinese Journal of Vacuum Science and Technology,2011年, Vol.31(2011) 37-43

  [53]        HT-7托卡马克中锂第一壁研究的先行试验,Chinese Journal of Vacuum Science and Technology, Vol.30(2010)273-278

  [54]        Oxidation wall conditionings on HT-7 and EAST superconducting tokamaks, Journal of Nuclear Materials, Vol.415 (2011) S1054–S1057

  [55]        Investigation of lithium as plasma facing materials on HT-7, Fusion Engineering and Design, Vol.85(2010) 930–934

  [56]        EAST vacuum and wall conditioning group, Vacuum and wall conditioning system on EAST, Fusion Engineering and Design, Vol. 84 (2009) 2167–2173

  [57]        Comparison of O-ICR wall conditionings for limiter configuration in HT-7 and divertor one in EAST, Journal of Nuclear Materials, Vol.390–391(2009)929–933

  [58]        He–ICR cleanings on full metallic walls in EAST full superconducting tokamak, Journal of Nuclear Materials, Vol. 376 (2008)207–210

  [59]        Oxidation for deposits removal and hydrogen release on HT-7, Journal of Nuclear Materials, Vol.363-365C (2007)862-869

  [60]        Deposits removal and hydrogen release on exposure co-deposited films to O-ICR and O-GDC plasmas in HT-7, Plasma Physics and Controlled Fusion, Vol.49(2007)421-434

  [61]        Differences of ICR cleanings in He, D2 and O2 for deposit removal and hydrogen release in HT-7, Journal of Nuclear Materials, Vol.366(2007) 206-215

  [62]        Plasma recovery after various events in HT-7 superconducting tokamak, Fusion Engineering and Design, Vol.83(2008)689-694

  [63]        Oxygen removal with D2-ICR cleanings after oxidation experiment in HT-7, Fusion Engineering and Design, Vol.82(2007)133-139

  [64]        Oxygen removal with different cleaning techniques under various wall conditions in HT-7, Fusion Engineering and Design, Vol.81(2006)2175-2186

  [65]        Removal of re-deposited layers and release of trapped hydrogen by He/O-ICR plasma in a HT-7 superconducting tokamak, Plasma Physics and Controlled Fusion, Vol.48(2006)807-820

  [66]        Oxygen glow discharge experiment to remove deposited layers and hydrogen in HT-7 superconducting tokamak, Journal of Nuclear Materials, Vol.350(2006)9-18

  [67]        Thermo-oxidation to remove re-deposited layers and to release trapped hydrogen isotopes in HT-7 superconducting tokamak, Journal of Nuclear Materials, Vol.349(2006)160-166

  [68]        Primary results of the upgraded actively coolant limiter system of HT-7, Fusion Engineering and Design, Vol.73(2005)119-125

  [69]        The first Results of O-ICR Experiment to Remove Re-deposited Layers and Hydrogen in HT-7 Superconducting Tokamak, Plasma Physics and Controlled Fusion, Vol.47(2005)1271-1286

  [70]        Design of actively cooled flat toroidal limiter with CuCr heat sink for the HT-7 superconducting, tokamak Fusion engineering and design, Vol.72(2005) 377-390

  [71]        Temperature change and power deposition analysis of HT-7 Tokamak limiter during long pulse plasma discharge, High Power Laser and Particle Beams, Vol. 16 (2004) 597-602

  [72]        HT-7超导托卡马克装置真空系统参数的标定及分析, Chinese Journal of Vacuum Science and Technology, 2004年,期:2 页:149-153

  [73]        Study of HT-7U graphite in HT-7 superconducting tokamak, Chinese Journal of Vacuum Science and Technology, Vol.21(2001)245-249

  [74]        Removal of Particles by ICRF Cleaning in HT-7 Superconducting Tokamak, Plasma Science & Technology, Vol.3(2001) 621-627

  其他期刊论文106篇(略)

  [1]        左桂忠、胡建生、任君、孙震,一种高温、强化学性的液态锂浸润性的测量系统,2017.1,中国,ZL 2013 1 0589936.8, 发明专利

  [2]        李建刚,胡建生,左桂忠,利用液态金属锂用于磁约束反应堆真空室第一壁高热负荷区的装置,2015.2,中国,ZL 2012 1 0069584.9,发明专利

  [3]        左桂忠,胡建生,李建刚,孙震,利用金属锂涂层作为改善全超导托卡马克第一壁燃料再循环的方法,2013.12,中国,ZL 2012 1 0111534.2,发明专利

  [4]        龚先祖,吴金华,赵燕平,胡建生,李建刚,一种利用高频场对磁约束聚变装置第一壁进行清洗的方法,2013.12, 中国,ZL 2011 1 0369135.1,发明专利

  [5]        庄会东,王小明,胡建生,张晓东,等离子体破裂防护专用的防磁干扰大气量充气阀,2013.9,中国,ZL 2012 1 0050543.5,发明专利

  [6]        袁啸林,陈跃,胡建生,周跃,李长征,姚星佳,一种真空报警灯控制电路,2015.12,中国, ZL 2015 2 0620318.X,实用新型专利

  [7]        左桂忠,任君,胡建生,孟献才,孙震,黄明,徐伟,一种强化学活性、高温易蒸发液态金属液位测量系统,2015.4,中国,ZL 2014 2 0759148.9,实用新型专利

  [8]        陈肇玺,杨庆喜,宋云涛,胡建生,左桂忠,徐皓,一种用于液态金属驱动的电磁泵,2014.12,中国, ZL 2013 2 0416851.5,实用新型专利

  [9]        袁啸林,陈跃,胡建生,周跃,李长征, 姚星佳,曹斌,王厚银,基于PXI总线的多数据采集系统,2014.8,中国,ZL 2014 2 01112095.1,实用新型专利

  [10]        袁啸林,陈跃,胡建生,周跃,量程自适应型数字电压表,2013.3,中国,ZL 2012 2 0628074.6,实用新型专利